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Abstract 

Let f be a Hermitian-holomorphic vector bundle with compatible Chem connection V, defined 
on the complement of [w” inside a polydisc A 5 c” . The main result of this note provides a neces- 
sary and sufficient condition for unique extension off to A, namely that the curvature Fv, when 
contracted with a non-vanishing holomorphic vector field c, is a-exact. Applications to remov- 
able singularities for anti-self-dual connections across a real line in (c2 and solutions of the static 
monopole equation across a point in [w3 are also given as corollaries. 0 1999 Elsevier Science B.V. 
All rights reserved. 
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1. Introduction 

For every unitary vector bundle on a complex manifold there is a one-to-one correspon- 
dence between unitary connections V with curvature form FV of type (1, l), and compatible 
holomorphic structures. Since the appearance of the removable singularities theorem of Uh- 
lenbeck [ 121, criteria for the extendibility of unitary gauge fields across subsets of Euclidean 
space have evolved from L2 - “finite energy” - curvature assumptions, but as we hope to 
indicate in this note, another line of investigation is opened by considering the associated 
holomorphic structures. In particular, the interplay between unitary connections of curva- 
ture type (1, 1) and holomorphic connections will be seen to provide an alternative (though 
possibly related) class of removable singularities theorems. 
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Fundamental to the following discussion is the role played by Hartogs figures in Cm. A 
typical Hartogs figure H consists of a union of two sets, the first of which corresponds to 
the Cartesian product of a polydisc D C (I?-’ with an annulus A c @, while the second 
corresponds to the product of an open ball strictly contained in D with a disc which “fills 
in” the annulus. Their utility in a wide range of extension problems, from continuation of 
holomorphic and meromorphic functions to extension of analytic subvarieties and coherent 
analytic sheaves, has been surveyed by Siu [ 111, drawing together in this work the results 
of several authors. 

The role of holomorphic connections as a means of extending complex vector bundles 
across compact regions, or analytic subvarieties of codimension two or more, has been 
examined by Buchdahl and the author in [4], while an application to continuation of unitary 
gauge fields, and in particular anti-self-dual Yang-Mills fields, has been exposed in [7]. 
Given a holomorphic vector bundle & on a Hartogs figure H, the essential idea is first to 
trivialise E over the polydisc D. If 6 denotes a non-vanishing holomorphic vector field on 
H, tangent to the annular fibres A, then existence of a holomorphic Lie derivative Lc acting 
on sections of & (i.e., a holomorphic relative connection, which provides a canonical “lift” 
of 4 to the total space of E) determines a trivialisation on H by covariantly constant frames, 
provided holonomy is trivial. Now the second component of H consists of simply connected 
discs parametrised by an open ball inside D, and holonomy is parametrised complex- 
analytically, hence uniqueness of analytic continuation implies that trivial holonomy over 
the ball extends to D. Unique extension of E to the smallest polydisc containing D x A 
then follows directly. 

Let TX denote the smooth tangent bundle of acomplex manifold X. A holomorphic vector 
bundle E is said to be “Hermitian-holomorphic” if it is equipped with a Hermitian structure 
and a uniquely determined unitary connection V : C”(X,E) + C”(X, T*X 8 &), 
“compatible” with & in the following sense. V corresponds to d + A’,’ + A’,’ in any 
unitary frame, where the second and third terms are matrix-valued one-forms in dz and d? 
respectively, such that A’,’ = -(A’,‘)* (“*” denoting the Hermitian adjoint). Moreover, 
$A’,’ + A’,’ A A’,’ = 0 together with the Newlander-Nirenberg theorem for holomorphic 
vector bundles [2,5] imply that 8 + A ‘3 ’ locally determines the holomorphic structure 8~. 

Given K a compact subset of a domain Q c Cm, and X := n \ K, assume the existence 
of a “Higgs field” I++ E C”(Q \ K, E @ E*) [9] such that 

a+ = FVJC, (1) 

the second term denoting contraction of FV by t. This was seen in [7], Corollary 3, to 
provide a sufficient condition for existence of a holomorphic Lie derivative Lg , and hence 
for unique extension of E across K. In particular, when K = {0}, Q corresponds to a ball 
B g R4 and V is an anti-self-dual connection, 
energy” condition 

(1) is effectively equivalent to the “finite 

IjFv1j2 := 1 -tr(Fv r\*Fv) -c co 

B\Wl 
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(where * FV denotes the Hodge dual) used by Uhlenbeck. The L*-curvature hypothesis has 
also been applied by Bando [3] to extend Hermitian-holomorphic vector bundles across the 
origin in C2. 

The concern of the present note, however, is in applying condition (1) to the unique 
extension of Hermitian-holomorphic vector bundles across totally real submanifolds. In 
particular, let A s C2n-k, k = 0. 1, n 1 2, represent a polydisc, and R2n-k denote the 
set of (z) E @2n-k such that the imaginary part Im(zj) = 0, 1 5 j 5 2n - k. Moreover, 
define tit.’ to be a sub-bundle of the holomorphic tangent bundle of @2n-k, such that for 
all p E C2n-k, 

Q.0 ._ 
P .- sPanC 

where brackets [ ] here denote the integer part. 

Theorem 1. Consider E + A \ R2n-k a Hermitian-holomorphic vector bundle, and .$ a 
non-vanishing section of fl’,’ over A. Then there exists @ E CD0 (A \ [WZnek, I @ &*) such 
that 

if and only if there exists a unique holomorphic extension E^ + A such that 2 lA,R~~-k Z E. 

If 17 : F+l \ (0) + CP, denotes the natural quotient map, an example of a holo- 
morphic vector bundle over Cm \ OF which admits no holomorphic extension is E := 
n*T’*‘CP, /~m\~m, m = 2n - k > 3. If & were extendible to @” in this case, it would 
of course be trivial. As in [4], where n*T l~“@P, is shown to define a non-trivial bundle 
over Cm+’ \ {0}, the proof of non-triviality rests on the fact that the vanishing locus of a 
holomorphic function of two or more variables cannot be contained in a totally real subset. 

When a Hermitian connection splits into V = V’,’ + 2, such that 

(i.e., the curvature Fvl.o has bi-type (2,0)), then E admits a holomorphic connection. A 
global corollary of Theorem 1 is the following. 

Corollary 1. Consider M” a real-analytic manifold, and a complex manifold X” , m > 3, 
corresponding to the complexi$cation of M. Let & + X \ M be a Hermitian-holomorphic 
vector bundle. If & admits a holomorphic connection, then there exists a unique extension 
i + X. Moreoven if X is a Stein manifold, then 2 exists if and only if & admits a 
holomolphic connection. 

Given M real-analytic, the complexification X can always be constructed as a Stein 
neighbourhood containing M as the fixed-point set, or “real slice”, of an anti-holomorphic 
involution corresponding locally to complex conjugation on X. In many instances M com- 
pact gives rise to a natural compactification of X, as for example M = s4, X = G-(2,4) 

[61. 
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A Hermitian-holomorphic vector bundle & corresponding to an anti-self-dual gauge 
field on R4 \ [w2 is necessarily trivial, since FV is of type (1,l) with respect to any 
metric-compatible complex structure on [w4. In particular, any complex structure for which 
l&F4 \ I%* corresponds to C2 \C yields a trivialisation of the associated Hermitian-holomorphic 
vector bundle via the Oka-Grauert principle [8], and consequently the smooth anti-self-dual 
connection extends uniquely to R4. Such extensions do not exist in general, however, as 
a holonomy-classification of singular Sobolev connections, due to Sibner and Sibner [lo] 
has explicitly revealed. 

When E is a Hermitian-holomorphic vector bundle defined on the complement of a totally 
real line in @*, the existence of a holomorphic Lie derivative Le, together with the method 
of continuation by Hartogs figures, is easily seen in Corollary 2 here to generalise the result 
of [7], corollary 3, as applied to extension of anti-self-dual gauge fields defined initially 
on the complement of a point in [w4. A further consequence of this result is a removable 
singularities criterion for solutions of the static Bogomolny equation - viewed as a time- 
independent reduction of the Yang-Mills equation - defined initially on the complement of 
a point in Iw”. 

2. Unique extension of Hermitian-holomorphic bundles 

Given a polydisc A 2 C2n-k, n 1 2, k = 0, 1, recall the definition of ‘FI’,O as a 
sub-bundle of the holomorphic tangent bundle of C2n-k, such that for all p E C2n-k, 

xl.0 ._ 
P 

.- spatic l a a 
-+i- 
az2j-1 az2j ’ lljl n-t . [ II 

Theorem 2. Consider & + A \ R2n-k a Hermitian-holomorphic vector bundle, and 6 a 
non-vanishing section of ‘I-t’,’ over A. Then there exists $ E C”(A \ [W2n-k, & @ &*) such 
that 

if and only if there exists a unique holomorphic extension ?? -+ A such that 2 l&\RZn-k c E. 

ProoJ The argument will be simplified slightly if the following @-linear change of coordi- 
nates is imposed on C *n-k. Let W2j_1 := Z2j-1, w2j := ~2j-1 +iz2j, 1 5 j ‘: [a -k/21, 

and wzn_ t := zzn_ 1. Now consider m : ~2n-k ~ c=n-k, where m(w) = (6) such that 
6j := w2j, 1 I j 5 [n - i], and without loss of generality, assume t = a/awl. Let 
‘% denote the image of (WZnPk under the above coordinate transformation, determined ex- 
plicitly by the equations Im(wzj-1) = 0, Re(wzj-1) = Re(wzj), 1 5 j 5 [n - k/2], 
and Im(wz,_ 1) = 0. Consequently m-t (6) determines an n-dimensional complex sub- 
space of C2n-k such that for all W E m(A), k = 0 implies W n m-l (6) consists of a 
unique (w) such that W2j_t = Re(zZlj), w2j = Wj, 1 5 j 5 n. Alternatively, k = 1 
implies !X f’ m-‘(6) = (20) such that w2j-1 = Re(tZj), w2j = 6j, 1 5 j 5 n - 1, and 
Im(wz,_t) = 0. Choose p E 8 n A, and for E E R+, define 
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N(P, E) := i(w) E A IWwz) E @(w(p)) - E, Ww(p)) + &)I. 

Moreover, for R > E, let 

155 

T,(R, E) := I(w) E N(P, E) I Iw - Re(w(p)Y 5 RI 

so that 

f(w) E N(P, E) I I w1 - Re(wz)l < R - E} C T,(R, E). 

L,et n : C2n-k + C2n-k-’ be the projection which deletes wt. Then n(_U(p, E)) is a 
2n - k - l-dimensional polydisc, and N(p, E) \ Yi contains 

N(p, E) \ T,(R, 6) 2 ~(N(P, E)) x Iw E c I R < Iv - Re(w(p))l < V. 

Now let 

D, := {(w) E N(p, E) \ T,(R, E) I WI = c} g r(N(p, E)) c C2n-k-‘, 

and observe that E lops O&,_,_, by the Oka-Grauert Principle. The construction of an 
appropriate Hartogs figure is carried out in each of two cases as follows. 

Case I: k = 0. Choose q in n(N(p, E)) minus the set of n(w) such that wzj_1 = 
Re(wzj), 2 5 j 5 n, and a sufficiently small open neighbourhood B, such that n-t (B4) fl 
‘8 = VI.Now& := n-‘(Bq)nN(p,&)has&nDp Z Bq,hencedefineHp := (N(p,&)\ 
T’,(R, E)) U B,. 

Case 2: k = 1 Choose q in n(N(p, E)) minus the set of n(w) such that Im(w2,_1) = 0, 
and a sufficiently small open neighbourhood B, such that z-’ (B4) rl !X = 0. Hence define 
HP as above. 

The open sets N(p, E) \ Tp (R, E) and h, have the property that, for E and R suffi- 
ciently small, holomorphic frames fl , f2 of E may be defined on each set, once again as 
a consequence of the Oka-Grauert Principle. Relative to local complex coordinates on A, 
let 6 correspond to a/awl. Recall that FV is of type (l,l), such that with respect to any 
V-compatible holomorphic frame of &, A’,’ = 0. Locally, 

aA;’ 
&It’ = .Gaw dG, 

” 

so that Fv]~ = %,b implies that A:” - @ is a holomorphic matrix. Now if fop denotes a 
holomorphic frame of E restricted to D,, a new holomorphic frame f, may be constructed by 
“parallel propagation” of fop along the fibres of rc. With respect to V13’ = a/a w 1 +A ;%” -$, 

such a “covariantly constant” frame on N(p, E) \ T,, (R, E) satisfies the ordinary differential 
equation and initial data 

-$ + (A;” - Ilr)f?r = O, 
1 

fr (P’) = fD,, (P') 

forall p’ E Dp. Sincen-‘(n(p’))n(N(p, c)\Tp(R, E)) is an annulus, it follows that awell- 
defined solution of (2) may be obstructed on each fibre by holonomy, i.e., an automorphism 
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cx E GL(r,C)suchthatforacircularpathy,/ err-l(rr(p’))n(N(p,~)\Tp(R,~)),where 
yPr (0) = vPf (1) = p’, we have f, (y,,~ (1)) = o . f,(v,J(O)). Now let z‘o, := g . fop denote 

h 
a holomorphic gauge-equivalent frame on B, n D,. Then a simple gauge transformation 
of (2) indicates that f z := S . f, (with respect to an extended gauge transformation j on 
(N(p, F) \ T,(R, E)) fl &) satisfies 

for all p’ E D, fl &, where 

Al,0 --I 
1 =g . (A;*’ -9).I+g-l.$. 

Given that n-t (n (p’)) n is is simply connected, however, it follows that holonomy asso- 
ciated with solutions of (3) must be trivial, and since it varies holomorphically along D,, 
the holonomy o associated with (2) must also be trivial by uniqueness of analytic contin- 
uation. fn thus extends to a covariantly constant holomorphic frame on HP, and hence on 
N(p, E) \ R by homotopy equivalence of paths. If a constant frame corresponding to the 
standard basis of gr is now chosen on N(R, E), then the holomorphic gauge transformation 
g := f, extended to N( p, E) \ % yields this constant frame as a local extension of E, with 
a/awl as the local representation of Vi”. Clearly the entire procedure may be carried out 
for any point p E A fl 8. Hence E extends to A, and uniqueness follows automatically from 
the fact that all holomorphic vector bundles on A are trivial. Conversely, given the trivial 
extension 2 -+ A, a(&] 6) = 0 automatically implies F’v]t is a-exact by the Dolbeault 
lemma. 

Remark 1. It is interesting to compare the extension method above with one commonly 
employed to extend holomorphic functions, initially defined on C” \ Iw” for all m > 2. In 
particular, when m = 2, a biholomorphic coordinate transformation of the form (WI , ~2) = 
(~1 + izi, ~2) allows the image of [w2 to be spanned locally by a standard Hartogs figure, 
and hence a holomorphic function f, composed with the above transformation, extends 
uniquely across the image. Each annular fibre of the Hartogs figure encompasses either two 
points of the image of [w2 or none, depending on whether the imaginary part of the fibre 
coordinate is non-negative or negative. Accordingly, the homotopy of loops associated with 
each fibre is either freely generated by two distinct classes, or trivial. Note that while this 
has no effect on the definition of an extension f^ of f, it clearly obstructs the trivialisation 
of a holomorphic vector bundle on the Hartogs figure, since parallel transport of frames 
need not be well-defined. 

Corollary 2. Consider MM a real-analytic manifold, and a complex manifold Xm , m 1 3, 
corresponding to the complexljication of M. Let I -+ X \ M be a Hermitian-holomorphic 
vector bundle. If & admits a holomorphic connection, then there exists a unique extension 
E^ + X. Moreovel; if X is a Stein manifold, then 2 exists if and only if E admits a holomorphic 
connection. 
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ProoJ For every Hermitian-holomorphic vector bundle, the curvature FV of the compatible 
Hermitian connection determines a cohomology class 

W& EHl(X\M,C?(T’,OX)*~~E~*), 

where (T ‘,OX)* denotes the holomorphic cotangent bundle. The class WE defines the unique 
obstruction to existence of a holomorphic connection [l], hence E admits a holomorphic 
connection precisely when there exists q E C”(X \ M, (T1loX)* @ E @I E*) such that 
29 = Fv. In particular, note that Fv_~ has curvature of type (2,0), hence V - q is the 
required holomorphic connection. Now choose p E M and a sufficiently small coordinate 
neighbourhood U,,, such that M fl tr, is biholomorphically equivalent to R” II A above. 
For any non-vanishing holomorphic vector field c corresponding to a section of 8’3’ on 
U,,, let y? := ~~~, so that the equation a@ = Fv]~ is satisfied on UP. Existence of E^ then 
follows directly from the preceding theorem. To verify uniqueness, let &I, &Z + X denote 
vector bundle extensions obtained by the above process, i.e., El ]x\MZ 82 ]x\MZ E. Let 
@ E P(X \ M, & @ET) denote the isomorphism between these holomorphic bundles when 
restricted to the complement of M, hence det(@), # 0 for all p E X \ M. In a similar 
manner to the above, @ may be extended uniquely to X via Hartogs’ theorem, hence if it is 
non-empty, the vanishing locus of det(@) is now supported by an analytic hypersurface in 
X, which must intersect X \ M. However, this clearly contradicts the fact that @ ]X\M is an 
isomorphism, hence El Z E2 Z 2. It remains to observe that the converse statement follows 
from Cartan’s Theorem B when X is a Stein manifold, since the cohomology obstruction 
to existence of a holomorphic connection on 2 + X vanishes. 0 

Corollary 3. Let L be a real line in iw4, and I -+ B \ L a Hermitian-holomorphic vector 
bundle over a ball minus L, with a compatible connection V. Suppose 6 is a non-vanishing 
holomorphic vector$eld on fZ2 such that thejow of < intersects each point of L transversely. 
Ifthere exists $ E CW(B \ L, & @ &*) such that a@ = Fv],$, then there exists a unique 
Hermitian potential A over the ball, which is gauge-equivalent to the potential associated 
with V over B \ L. 

Pro08 Consider n : C2 + C the projection which deletes zi. Note that n-l (~2) fl L = 0 
for all ,Q E @ \ x(L), otherwise the intersection consists of a single point. If Lc denotes the 
complexification of L as a complex subspace of C2, for all p E B let h(p) := E-I (n(p)> fl 

LC. Now choose p E L (I B and sufficiently small numbers S > E E [w+ such that 

N(p, E) := (p’ E B I Izl(Up’)) - zl(p)l < E, IzI(P’) - zl(~)l < SI. 

Moreover for S > R > E, let 

T,,(R, e) := (p’ E &‘(/(,, e) I IzI(P’) - ZIP i RI, 

so that 

{p’ E N(p, E) I IZl(P’) - Zl(UP’))l < R - &I = T,(R, E). 
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Note n(N(p, E)) is a disc in C, and N(p, E) \ L contks 

N(p, E) \ T,(R, E) g n(N(p, E)) x {ZI E ~2 I R < IZI - ZIP < s). 

Now let 

Dp := {p’ E N(p, E) \ T,(R, E) I ZI = cl g n(N(p, E)) c @, 

and observe that E 1 D, 2 0; by the Oka-Grauert Principle. Choose 9 and a sufficiently 

small open neighbourhood B, in n(N(p, E) \ L), such that 7r-l (B,) n L = 0. Now b, := 
n-‘(B4) n N(p, E) has & n D, g B,, hence define a Hartogs figure HP := (N(p, E) \ 
T,, (R, E)) U &. Now, without loss of generality, assume 4 := 8/azl on a sufficiently small 
neighbourhood of p. The remainder of the argument proceeds as in Theorem 2 above. 0 

Remark 2. Note that a special case of the above corresponds to V an anti-self-dual con- 
nection with respect to the associated unitary structure. 

As a final corollary to the main theorem, consider B a ball in Iw3, and E --+ B \ (0) 
a unitary vector bundle, with Hermitian connection V represented locally by a potential 
A = Al d_xl + A2 dx2 + A3 dxg. The static Bogomolny equation for monopoles is a field 
equation on [w3 which may be realised as a time-independent reduction of the anti-self-dual 
Yang-Mills equation on [w4. In particular, if n : lR4 -+ lR3 simply deletes the t-coordinate, 
then 

n*Fo + n*(*Fv) A dt (4) 

naturally defines an anti-self-dual two-form on [w4 (note that the Hodge star in (4) refers 
to forms on Iw3). A Hermitian connection V’ on n*E for which (4) corresponds to Fv~ can 
be constructed in each local frame by defining A’ := A + C+I dt such that the (Bogomolny) 
equation 

is satisfied. Here p represents the “electrostatic potential” of the monopole field (cf. [9]). 
Recall that V’ is compatible with the holomorphic structure of TC*& over n*B C C2, hence 
&+E is represented locally by matrices of the form 

A&’ ._ 1 .- ~(AI + iA2) dZ1 + :(A3 + ilp) dZ2, 

with respect to complex coordinates z1 = nl + ix2, z2 = x3 + it. Define an operator 

D : C”(E) + C”((a= 8 T[W3)* @E) 

such that for any section CJ of E, 

_ 
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As a slight abuse of notation we shall use “D” also to denote the induced operator on E 8 &*. 

Corollary 4. Let FV = C,,, F,,,, dx, A &, represent a static monopolejeld on B \ {0} s 
R3. Ifthere exists @ E P(B \ {0}, E ~3 &*) such that 

then there exists a unique connection over B which is gauge-equivalent to V over B \ (0). 

ProoJ Note 

F&& = n* (Fv,$) --* (*Fv’$,) dt 

while it is easily checked that 

Moreover, @ E P(B \ (0), E @ &*) implies that in any local frame 

Akron* = n*(D@) - i 
( 

& + i (A3 + iv) n*($) dt 
3 > 

But Dy? = FvJ a/b1 , together with (6), implies 

(6) 

(7) 

hence from (5) and (7) it follows that ??+~n*($) = Fv~] &. Now consider any ball 

B’ C R4 such that B’ n R3 = B, let L correspond to the t-axis, and apply the previous 
corollary. The unique anti-self-dual connection obtained on B’ is gauge-equivalent to V’, 
hence time-independent, and satisfies the Bogomolny equation on B. 0 
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